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Abstract: Given a reference triangle, we investigate the loci 
of the midpoints of the pedal triangle as the pedal point runs 
round a circle.  These loci are ellipses whose principal axes 
align with the angle bisectors of the reference triangle.  We 
show that the axes of these ellipses intersect in a common 
point if and only if the center of the circle lies on the line 
joining the incenter to the circumcenter, in which case the 
intersection of the axes lies on the Nagel Line. 

 

1. Introduction 
 Given a triangle ABC, and a circle DE, the locus of the midpoint of a side 
of the pedal triangle as the pedal point runs round the circumference of DE is an 
ellipse (figure 1).  
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Figure 1: Locus of midpoints of a side of a pedal triangle as the pedal point moves round a circle.  
The locus equation (shown) is an ellipse. 
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In this paper we look at the ellipses formed by the midpoints of the three sides 
of the pedal triangle, and ask the question, when are the axes of these ellipses 
concurrent? 
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Figure 2: Loci of midpoints of a side of all three sides of the pedal triangle as the pedal point 
moves round a circle.   

 
 

2. Ellipse Description 

Definition: Given 2 non-parallel lines L1 and L2, we define the transformation 
1 2,L L

T  

such that, for any point P, 
1 2,

( )
L L

T P is the midpoint of the projections of P onto L1 and 

L2 . 

Lemma 1:  
1 2,L L

T is an affine transformation with principal axis on the angle bisectors 

of L1, L2 and has principal values cos
2(θ) sin2(θ), where θ is half the angle between 

L1 and L2. 

Proof:  If we align our axes such that the origin lies at the intersection of the lines, 
and the x axis lies along the perpendicular bisector, simple trigonometry gives the 
result (figure 3) 
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Figure 3: E and F are the projections of point(a,b) onto lines through the origin with slopes θ and 
–θ.  G is their midpoint. 

 

Corollary 2:  If P is on the angle bisector of L1 and L2 , then 
1 2,

( )
L L

T P  is also on the 

angle bisector. 

Proof: b=0 in figure 3 

Theorem 3: If Ω is a circle centered at P, then 
1 2,

( )
L L

T Ω  is an ellipse centered at 

1 2,
( )

L L
T P , whose principal axes align with the angle bisectors of L1 and L2, whose 

semi major and semi minor axes sum to the radius of Ω, and are in the ratio tan2(θ). 

Proof: follows directly from Lemma 1. 

3. Ellipse Triples 
Notation: Given a triangle ABC, let L1 be the line BC, L2 be the line AC, and L3 be 

the line AB.  We write TA for 
2 3,L L

T , TB for 
1 3,L L

T , TC for 
1 2,L L

T  

Given a circle Ω centered at D, we seek to characterize the conditions under which 

the principal axes of the ellipses ( )
A

T Ω , ( )
B

T Ω , ( )
C

T Ω  meet at a common point. 

Definition: Given a triangle ABC and a pedal point D, we define LA(D) to be the line 
through TA(D) parallel to the bisector of  angle BAC. 
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Figure 4: E,F,G are vertices of the medial triangle of the pedal triangle.  We show lines parallel to 
the angle bisectorsof the original triangle through E,F and G.  These align with principal axes of 

the ellipses under study.  In this example, they are clearly not concurrent. 

 

Lemma 4: The centers of the ellipses ( )
A

T Ω , ( )
B

T Ω , ( )
C

T Ω  are TA(D), TB(D), TC(D) 

and their principal axes are LA(D), LB(D), LC(D) (and their perpendiculars) 

Proof: Follows directly from the definition of T and from Theorem 3. 

Lemma 5: If I is the incenter of ABC, then LA(I), LB(I), LC(I) are the angle bisectors 
of ABC and meet at the incenter. 

Proof:  I lies on the angle bisectors of all 3 angles of ABC. By lemma 2, ( )
A

T I , 

( )
B

T I , ( )
C

T I lie on the bisectors of angle A, B and C respectively.. 

Lemma 6: If O is the circumcenter of ABC, then LA(O), LB(O), LC(O) meet at the 
incenter of the medial triangle of the medial triangle of ABC.  (this is the Kimberling 
point X(1125). 

Proof:  The pedal triangle of the circumcenter is the medial triangle of the reference 
triangle.  TA(O), TB(O), TC(O) are therefore the vertices of the medial triangle of the 
medial triangle of ABC.  As this triangle is similar to and similarly oriented to ABC, the 
lines LA(O), LB(O), LC(O) are the perpendicular bisectors of the triangle TA(O), TB(O), 
TC(O), and hence meet at its incenter. 

Theorem 6: For a given triangle ABC, and point D, the lines LA(D), LB(D), LC(D) 
meet at a point if and only if D lies on the line IO joining the incenter and the 
circumcenter of ABC.  
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Proof: let u,v,w be vectors parallel to the angle bisectors of ABC.  By lemma 5, 

there are constants 
0 0 0
, ,α β γ  such that 

0 0 0
( ) ( ) ( )

A B C
T I T I T Iα β γ+ = + = +u v w  

By Lemma 6, there are constants 
1 1 1
, ,α β γ  such that 

1 1 1
( ) ( ) ( )

A B C
T O T O T Oα β γ+ = + = +u v w  

Let P be a point on the line IO, then P can be written: 

(1 )P k I kO= − +  

for some constant k.  As TA is affine and hence linear, 

( ) ((1 ) ) (1 ) ( ) ( )
A A A A

T P T k I kO k T I kT O= − + = − +  

We show that the point: 

0 1
( ) ((1 ) )

A
T P k kα α+ − + u  

is common to LA(P), LB(P), LC(P). 

0 1 0 1
( ) ((1 ) ) (1 ) ( ) ( ) (1 )

A A A
T P k k k T I kT O k kα α α α+ − + = − + + − +u u u  

0 1
(1 )( ( ) ) ( ( ) )

A A
k T I k T Oα α= − + + +u u

0 1
(1 )( ( ) ) ( ( ) )

B B
k T I k T Oβ β= − + + +v v  

0 1
( ) ((1 ) )

B
T P k kβ β= + − + v  

Similarly, 

0 1 0 1
( ) ((1 ) ) ( ) ((1 ) )

A C
T P k k T P k kα α γ γ+ − + = + − +u w  

Hence the point 
0 1

( ) ((1 ) )
A

T P k kα α+ − + u lies on all 3 lines LA(P), LB(P), LC(P). 

Now assume point Q not lying on OI satisfies the condition that LA(Q), LB(Q), LC(Q) 
meet at a common point.  The vectors OI and OQ span the plane, and hence any 
point P can be expressed as a linear combination of O,I and Q.  Hence by a similar 
argument to the above, LA(P), LB(P), LC(P) meet at a common point.  But there do 
exist points P where LA(P), LB(P), LC(P) do not meet at a point (figure 4), hence no 
such Q exists. 
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Theorem 7: If P is the point I+k(O-I) on the line joining the incenter to the 
circumcenter, then the lines LA(P), LB(P), LC(P) meet at the point on the Nagel line 

)(
4

3
IGkI −+ , where G is the centroid. 

Proof: Let Y(P) map a point on the line IO onto the intersection of the lines LA(P), 
LB(P), LC(P).  Y is linear and Y(I) = I and Y(O) = X(1125).  Now X(1125) lies on the 

Nagel line [1], and in fact if G is the centroid, )(
4

3
)1125( IGIX −+= .  Hence the 

result. 
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